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Abstract. Breast cancer is the most common type of cancer among
women. Early detection is essential to reduce mortality by breast can-
cer, and mammography is the main tool for detection and first diagno-
sis of breast cancer. However, mammogram interpretation is a difficult
task, and up to 30% of visible cancers in mammograms are missed by
human readers. For this reason, Computer-Aided Detection/Diagnosis
(CAD) systems have been developed since the 1990’s to ameliorate this
problem. On the other hand, the popularity of some Machine Learn-
ing (ML)/Artificial Intelligence techniques has increased dramatically
in the last decade due to technology development leading to improved
performance. Naturally, these techniques have also been introduced into
CAD systems for mammography analysis. In this work, a review of the
techniques employed in CAD systems is presented; this review is focused
on the paradigm shift observed within the ML research community and
how this has been reflected in the design of CAD systems for breast
cancer based on mammography analysis. Through this work, the reader
may gain valuable insights into this field.

Keywords: deep learning, mammography analysis, breast cancer, CAD.

1 Introduction

Breast cancer is the most common1 cancer in women worldwide with over 2
million new cases in 2018, contributing 25.4% of the total number of new cases
diagnosed in that year.2 Early detection of breast cancer can help to increase the
5-year survival rate. The primary technology for breast cancer screening is mam-
mography. Double-reading from independent expert radiologists is recommended
to minimize detection misses; however, this practice represents additional costs
and workload. Although there are ethical and technical difficulties that prevent
Computer-Aided Diagnosis (CADx) systems from completely replacing human

1 Excluding non-melanoma skin cancer, which is extremely common but often curable.
2 https://www.wcrf.org/dietandcancer/cancer-trends/worldwide-cancer-data
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experts, these systems can provide second-, or third-opinions to support the
decisions of radiologists based on mammography [8].

In this work we present a review of the most pertinent research about Machine
Learning (ML, a subset of Artificial Intelligence) based CADx of breast cancer
that has been published in the past ten years. Our review is limited to the
techniques that have been developed for the analysis of mammograms and is
presented from the perspective of ML practitioners, rather than from that of
a radiologist or a health care expert. A search of the literature in this topic
produces thousands of results. Necessarily, only the most cited papers and from
the publications with the highest impact factors were included in this review.
Also, only studies that experiment on mammography, either as digital/digitized
mammograms or as Digital Breast Thomosynthesis (DBT), were considered.
A number of recent surveys exist on the topic of ML/AI in medical imaging
[22,31,23], which were also examined for contributions relevant to the topic of
mammography analysis for CADx of breast cancer.

Our review is organized chronologically into two periods: the Feature Engi-
neering period (prior to 2015) and the Feature Learning period (2015 to date).
Also topically, according to the main tasks tackled by CAD systems: detection of
abnormalities (masses or microcalcifications), and classification of abnormalities.
Thus, our work is presented in two main sections, with subsections corresponding
to the mentioned tasks.

2 Background

Before Deep Learning’s (DL) near hegemony in almost every area of practical
application of ML [27], the research on medical image analysis in general, and
on mammography analysis in particular, was organized by tasks rather than
by techniques. Thus, different techniques from ML / image processing were
used for the detection of breast masses, while other (sometimes similar but
often quite different) techniques were developed for their classification into be-
nign/malignant classes, etc. The advent of DL with the AlexNet of Krizhevsky
et al. in 2012 [26,2], and its further impressive results in many of the areas of
application of ML, circa 2015, brought with it a radically different paradigm in
the way that medical image analysis can be addressed. Thus, in most surveys
published after 2016, two clearly delineated approaches for the use of ML in
CAD are present.

The two paradigms are illustrated in Fig. 1. In the Feature Engineering ap-
proach, a human expert performs feature design and selection, based on problem
data from which specific problem knowledge is extracted, and on his/her own
engineering expertise. Afterwards, to be classified, a data instance needs to be
preprocessed to extract the engineered features, and these can be fed to a simple
classifier3 such as an Artificial Neural Network (ANN) a Support Vector Machine
(SVM) [12], etc.

3 Said classifier must be trained beforehand on a dataset of extracted features; this
process has been disregarded for the sake of simplicity in our exposition.

116

Alfonso Rojas Domínguez, Héctor Puga, Manuel Ornelas Rodríguez, Itzel Guerrero Gasca

Research in Computing Science 149(5), 2020 ISSN 1870-4069



In the Feature Learning paradigm, the problem data is used to train a
Deep Neural Network that includes a Feature Extraction Stage and a so-called
Classification Head (a classifier embedded within the deep network). Afterwards,
a data instance can be input directly into the trained network, to be classified.
Notice that substantially more data is required to perform automated feature
learning than what is usually required for feature engineering[15]. The reason for
this is that humans inherently possess generalization capabilities that allow us
to discover patterns from, and to transfer prior knowledge into, new problems;
on the other hand, a network must learn everything from scratch, which can
only do by examining large amounts of training data [27,7].

Fig. 1. Two paradigms of ML-CAD: in Feature Engineering the orange arrows
represent the data flow for feature design & selection, while in aqua is the
classification of unseen instances. In Feature Learning, a Deep Network is trained
on large amounts of data (orange), afterwards the network will perform feature
extraction & classification of new instances (aqua).

Fig. 2. Convolutional Neural Network for classification.

With few exceptions, the features that are manually engineered by human
experts cannot be applied to different problems. In other words, features engi-
neered for breast-mass detection will not be useful for mass segmentation, nor
for mass characterization, etc.

On the other hand, the features ultimately learned by a Deep Network,
or high-level features, are based on other lower-level features, hierarchically
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generated by different layers of the network. The features in the first layers
describe abstract shapes (lines, edges, gradients, etc.); the features in the last
layers correspond to the specific structures of interest, such as spiculated masses
or fuzzy boundaries indicative of malignancy. Thus, low-level features possess
a degree of generality, so that to some extent the knowledge acquired by the
network can be transferred to other networks designed for different problems.
This is known as Transfer Learning (TL) [6], and is an important advantage of
DL over other ML techniques.

Regarding the type of networks that can be employed at the core of the
Feature Learning paradigm, we can list a variety of architectures [7]: Convolu-
tional Neural Networks (CNNs), Residual Networks, Recurrent Networks, Deep
Autoencoders [21], Deep Belief Networks [20], etc. The most commonly employed
type of network for mammography analysis is the CNN [1] (Fig. 2). A CNN is
characterized by being formed by several convolutional layers, that contain a
number of trainable convolution filters that produce so-called activation maps.

3 Feature Engineering Period (2009-2015)

Detection of breast masses by means of 2D mammography is hindered by dense
parenchyma, which can also generate false positive (FP) detection because the
overlapping tissue may mimic lesions. One alternative is the use Digital Breast
Tomosynthesis, patented in 19994, although initial experiences and comparisons
between conventional mammography and DBT were being performed circa 2007
[19,35]. DBT produces a set of 2D images or ‘slices’ from which a 3D voulume
of the breast can be reconstructed.

Overlapping of the parenchyma is reduced and this may offer higher sensi-
tivity than regular mammograms (and reduce recall rate [17]), but with increase
in workload. In the Feature Engineering period, several studies describe the
developing of early CADe systems to automate the analysis of DBT data [11,9].

Detection of Masses.– In 2008, Chan et al. presented a comparison of three
approaches for CADe of masses in DBT [10]. The comparison was carried out on
a dataset of 100 DBT cases. The approaches differ in the information that their
system employs (i.e. the 3D DBT reconstruction; the backprojected 2D images
that form a DBT case; or the combination of those). Detection was based on
three-dimensional gradient field analysis and several features that describe a can-
didate mass. Features included morphological features (volume (3D), area (2D),
perimeter, diameter and compactness); statistics of the gray level; run length
texture features[14] obtained via the Rubber Band Straghtening Transform [39]
and from spatial gray level dependence matrices [18], and a Hessian feature in
2D. The authors reported that the combined approach was superior to the other
approaches compared. In a previous work (Rojas-Domı́nguez & Nandi, 2009)
we explored the techniques for segmentation of masses, including the standard
features and other proposed features [38].

4 https://www.massgeneral.org/imaging/services/digital-breast-tomosynthesis.aspx
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Detection of Microcalcifications.– Typical techniques employed for detec-
tion of microcalcifications vary from simple thresholding to sophisticated meth-
ods, such as: the Wavelet Transform and similar techniques, like the Contourlet
Transform, that also enable the generation of mammograms in super-resolution
[33,47], as well as image denoising and enhancement [16]; the Laplacian of Gaus-
sian (or Difference of Gaussians) filter, used as a blob detector; morphological
operators; and other ad-hoc methods such as fuzzy-logic, Gabor filters, Zernike
moments, etc. A previous work (Rojas-Domı́nguez & Nandi, 2008) provides a
review of the most important of those methods [36]. The review by Elter& Horsch
[13] includes a table comparing these techniques in terms of their strengths and
weaknesses, while Pak et al. provide a performance-based comparison of these
techniques (up to 2015) [33].

Elter & Horsch stated that “half of all missed cancers seem to be missed due
to missclasification rather than due to oversight”[13]. This means that CADx
systems to characterize lesions are as important as CADe systems that detect
those lesions.

Classification of Abnormalities.– The most crucial features for classification
of breast masses are their shape and appearance of their margins. In simple
terms, benign masses possess clearly defined, smooth margins and round shapes,
while malignant masses appear as irregular shapes with diffuse/fuzzy or spicu-
lated margins (a spicule is a needle-like structure). Irregular borders indicate
that the mass has invaded surrounding tissue, a sign of a metastatic process.
Typical results achieve a sensitivity of 86% with 3 FP per image [41]. See our
previous work (Rojas-Domı́nguez & Nandi, 2009) for a discussion of this topic
and our proposed robust features for characterization of breast masses [37].

4 Feature Learning Period (2015-to date)

A comprehensive technical review of DL in medical image analysis is provided
by Shen et al. that includes details about the most common DL models and
an overview of the different applications [42]. A more general overview of DL
in medical imaging is [45]. One of the first works that tested the use of DL
techniques for mammography analysis is [4]. In 2016 Arevalo et al. studied the
automatic classification of breast lesions on a proposed biopsy-proven bench-
marking dataset from 344 cases with a total of 736 film5 mammography views,
and manually segmented lesions (426 benign and 310 malignant) [5]. In contrast
to previous works where DL models were trained in an unsupervised way [34,24],
the authors trained a CNN for feature learning in a supervised fashion, with the
peculiarity that instead of performing the classification by means of embedded
fully-connected layers, they used an independently trained SVM (nowadays this

5 That project has been updated to digital mammograms: https://bcdr.ceta-
ciemat.es/
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practice is far less common). They also used a preprocessing stage with local
and global image normalization and data augmentation.6

The authors report that their method exhibits improved performance (from
0.787 to 0.822 AUC7) when compared to state-of-the-art image descriptors, such
as Histogram of Oriented Gradients and Histogram of the Gradient Divergence
[32]. Their model also outperformed a set of 17 hand-crafted features that take
advantage of additional information from segmentation by the radiologist (notice
that these are generic image descriptors):

– Intensity: mean, median, maximum, minimum, standard deviation, skew-
ness, kurtosis.

– Shape: area, perimeter, circularity, elongation, mass centroid, form.
– Texture: contrast, correlation, entropy.

In recent studies, Giger [15] states that both handcrafted and deep-learned
features are important, underlining that systems combining both types of fea-
tures perform the best [3].

Detection of Abnormalities.– In 2016, Samala et al. employed TL on a
CNN-based CAD system to improve detection of breast masses in DBT [40].
They pre-trained the more generic layers (first 3 of 4), on a large training set
of mammograms and then trained the more specific layer on DBT data. The
CNN-based CAD system was compared against feature-based CAD including
morphological (volume, area, perimeter, longest diameter and compactness),
grey level (statistics, contrast and histogram features) and texture features (run-
length statistics on the rubber-band [39] of the objects margin). Based on said
features, the authors applied linear discriminant analysis-based classifiers to per-
form FP reduction. They obtained statistically significant improvements of their
CNN-based CAD system over their feature-based system. More importantly,
they showed that TL can preserve the low level similarities and capture the
high-level differences between representations of the masses.

In 2017 Kooi et al. compared a CNN-based system for detection of mammo-
graphic lesions against a state-of-the-art, feature-based system relying on a set
of 74 manually engineered features [25]. Among these features, those related to
Location, Context and Patient features were also provided to the CNN-based
system because they were considered complementary to the information that
the CNN could extract from the training mammograms. A total of 40,090 mam-
mograms were used for training, and 18,182 for evaluation. The CNN was a
scaled-down VGG [43] with 5 convolutional layers plus 2 fully connected layers.
The comparison showed no statistically significant differences (p = 0.2) using
the AUC. However, at high specificity, statistically significant differences were
found between the CNN+manual features against their reference state-of-the-art
system. Finally, in a comparison against human readers, the performance of the
CNN was lower than the average of 3 human readers.

6 Data augmentation produces variations of the original input data by performing
simple geometric transformations such as translations, rotations and mirroring.

7 Area Under the ROC Curve, a detection performance measure.
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Classification of Abnormalities.– The very recent review of Abdelhafiz et
al. identifies major challenges in training CNNs for mammography analysis and
the most popular solutions that have been employed to overcome them [1]. A
major challenge for the training of deep networks is the lack of sufficient labelled
data.

Sun et al. presented a graph based scheme of semi-supervised learning (SSL)
for CNNs [44]. While CNN training usually requires a large amount of labelled
data, their proposed scheme allowed the training of the CNN with only (before
data augmentation) 100 labeled ROIs plus 2400 originally unlabeled ROIs that
were labeled automatically by a co-training algorithm [17]. Their CNN followed
the design of LeCun [29,28] and was formed by 3 convolutional layers. The CNN
trained by SSL achieved the best performance (AUC=0.88), followed by an SVM
also trained by SSL (AUC=0.85).

Ting et al. [46] recently proposed to employ an interactive detection-based
lesion locator by means of an auxiliary network of the type Single Shot Multibox
Detector [30], which is a deep network developed for multiple object detection.
Their proposal achieves an AUC=0.90. Ting et al. also performed a sophisticated
preprocessing, including patch-based data augmentation by rotating and flipping
the lesion patches.

5 Conclusion

The effects of the paradigm shift observed in the field of ML extend to those
scientific fields in which ML techniques have been successfully applied. The
ML-based CAD systems for mammography analysis developed in the last decade,
clearly reflect these effects. However, the dominance of DL in this field is not as
extensive as in other ML applications. Based on the present review, we can
conclude that the Feature Engineering (favouring generic image descriptors)
and the Feature Learning approaches, currently coexist. The best performance
is obtained by fusion strategies that combine both. Large high-quality mam-
mography/DBT datasets could promote the maturity of DL techniques in the
near future, but these are not easy to compile. In the meantime, the inclusion
of complementary information not available in the mammograms, plus such
strategies as TL and data augmentation, are essential to the implementation
of the most competitive CAD systems.
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